Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Base de données
Sujet Principal
Année
Type de document
Gamme d'année
1.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.14.21260544

Résumé

ABSTRACT With the COVID-19 pandemic caused by SARS-CoV-2 now in its second year, there remains an urgent need for diagnostic testing that can identify infected individuals, particularly those who harbor infectious virus. Various RT-PCR strategies have been proposed to identify specific viral RNA species that may predict the presence of infectious virus, including detection of transcriptional intermediates (e.g. subgenomic RNA [sgRNA]) and replicative intermediates (e.g. negative-strand RNA species). Using a novel primer/probe set for detection of subgenomic (sg)E transcripts, we successfully identified 100% of specimens containing culturable SARS-CoV-2 from a set of 126 clinical samples (total sgE C T values ranging from 12.3-37.5). This assay showed superior performance compared to a previously published sgRNA assay and to a negative-strand RNA assay, both of which failed to detect target RNA in a subset of samples from which we isolated live virus. In addition, total levels of viral RNA (genome, negative-strand, and sgE) detected with the WHO/Charité primer-probe set correlated closely with levels of infectious virus. Specifically, infectious virus was not detected in samples with a C T above 31.0. Clinical samples with higher levels of viral RNA also displayed cytopathic effect (CPE) more quickly than those with lower levels of viral RNA. Finally, we found that the infectivity of SARS-CoV-2 samples is significantly dependent on the cell type used for viral isolation, as Vero E6 cells expressing TMRPSS2 extended the analytical sensitivity of isolation by more than 3 C T compared to parental Vero E6 cells and resulted in faster isolation. Our work shows that using a total viral RNA Ct cut-off of >31 or specifically testing for sgRNA can serve as an effective rule-out test for viral infectivity.


Sujets)
COVID-19
2.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.04.10.21254091

Résumé

RT-qPCR is used world-wide to test and trace the spread of SARS-CoV-2. Extraction-less or direct RT-PCR is an open-access qualitative method for SARS-CoV-2 detection from nasopharyngeal (NP) or oral pharyngeal (OP) samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged ten global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international inter-laboratory ring trial. Participating labs were provided a common protocol, common reagents, aliquots of identical pooled clinical samples and purified nucleic acids, and used their existing in-house equipment. We observed 100% concordance across labs in the correct identification of all positive and negative samples, with highly similar Ct values observed. The test also performed well when applied to locally collected patient NP samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that open access, direct RT-PCR assays are a feasible option for more efficient COVID-19 testing as demanded by the continuing pandemic.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche